IT optimization as a source of sustainable competitive advantage.
Is technology investment approaching the point of diminishing returns?

Over the last ten years enterprises worldwide have transformed the way they do business by investing trillions of dollars in IT. They’ve expanded their marketplace reach while working more closely with customers and suppliers. The most innovative of these companies have created a substantial competitive advantage in the marketplace.

Paradoxically, while IT investment has been repaid many times over in accelerated times to market, improved customer relationships and faster supply chains, it has precipitated an exponential growth in IT assets that threatens future gains. The proliferation of assets has increased the complexity of the IT environment, raising operational and administrative costs and reducing infrastructure productivity.

These three trends are seriously constraining the ability of CIOs to deliver new applications, support business expansion and align IT with overall business strategy. There is increasing concern that IT investment is approaching the point of diminishing marginal returns.

This concern is justified. Rising operational expenses threaten to completely overtake IT budgets. In just eight short years, operational labor expense has risen from less than 40 percent of IT labor budgets to nearly 70 percent.1 With application development labor being squeezed out, CIOs are under increasing pressure to justify their budgets.

The question confronted by those companies that have leveraged IT to secure a competitive advantage is how to make their competitive advantage sustainable.
This white paper highlights the costs of IT asset proliferation and the advantages of the IBM view of IT optimization as a strategic, ongoing process. It describes the holistic and practical IBM approach and shows how it is helping organizations realize greater initial savings and higher returns going forward.

The high cost of IT asset proliferation
Driving the consternation among CFOs and CIOs is the growth in the number of servers and amount of storage. As IT assets increase, so does IT infrastructure complexity, creating significant management problems for an already overburdened IT administrative staff. In addition, data center energy consumption is skyrocketing at the same time that energy prices are on the rise.

Increasing operational overhead
IBM estimates that between now and 2010 the installed base of servers is forecast to continue growing at approximately 14 percent annually. External storage will explode at an even faster rate, with unprecedented growth expected between 2008 and 2010.²

The addition of each new server or storage device requires thinly stretched staff to spend time ensuring that the operating systems are current, security patches are administered on time and unauthorized changes are eliminated. In the interconnected data center of today, where one change can affect every other system and resource, these management challenges can increase exponentially. It’s therefore not surprising that employment of network analysts and system administrators has grown by 14 percent and 8 percent, respectively, as more and more people are needed to simply administer a typical company’s IT environment (see figure 1).³
For the last five years, the cost of operating a data center in the United States has increased by 15 percent per year.

Higher energy costs

Besides consuming administrative resources, asset proliferation consumes energy. In the United States, IT power and cooling costs for a typical company have been going up 15 percent per year over the last five years. Each dollar of new servers costs US$0.52 to power and cool, and this expense is forecast to increase to US$0.71 in the next four years.\(^4\)

Figure 1: A 2007 report from the U.S. Department of Labor shows that between 2004 and 2006 there have been significant shifts in the percentage of development to operational employees as more people are needed to administer increasingly complex IT environments.
IT optimization as a source of sustainable competitive advantage.

Highlights

While operational costs are increasing, application development and business expansion expenses are being dramatically reduced. As a result, many organizations are taking a strategic approach to optimizing their IT infrastructures.

Decreasing investment in development

Organizations have had to decrease investment in application development and business expansion to maintain and support an increasingly complicated environment. United States Department of Labor statistics show, for example, that spiraling operational costs have led to reductions of nearly 20 percent in business analysts—the very employees who ensure that IT investments align with business needs. In addition, there has been a decrease of some 8 percent in the ranks of programmers—the employees actually developing business applications.⁵

CIOs who are unable to align with business needs? CIOs who have to cut back on application development? Recognizing the danger, most organizations have already embarked on initiatives to optimize their IT infrastructures. Those achieving success are taking a strategic approach—consolidating resources, strengthening and streamlining management practices, and deploying proven conservation techniques.

Case study: reduced cost structure aligned with business value

To realize its vision of a tightly interconnected health system, the University of Pittsburgh Medical Center (UPMC) needed a supporting IT infrastructure that was better integrated and more flexible, robust and secure. The center contracted with IBM to help ensure availability of patient information across the UPMC network. As part of this agreement, UPMC is reengineering its infrastructure to eliminate underutilized assets. It expects to reduce the number of operating systems from 9 to 4, servers from 931 to 319, and storage arrays from 40 to just 2—while increasing functional capacity. Virtualization technologies will further improve system capacity, utilization and performance. And, to manage the infrastructure more efficiently, UPMC will employ a common tool set across platforms. At project completion, the center expects an overall IT cost savings of up to 20 percent.
IT optimization as a source of sustainable competitive advantage.

Page 6

Highlights

Successful IT optimization is a continuing process that can deliver lower asset costs and reduced operational expenses. In addition, it can help organizations achieve a sustainable competitive advantage by investing the resultant savings.

Building sustainable advantage through strategic IT optimization

For IBM, IT optimization isn’t just about IT cost savings. IBM views IT optimization as the process of creating a highly efficient and dynamic infrastructure to derive maximum business value from IT investments. The key word is process. Effective IT optimization continually mines the infrastructure for opportunities to improve responsiveness and return on investment. It is an ongoing process that can result in lower asset costs and reduced operational expenses.

In this sense, IT optimization is a vast shifting and acceleration of economies of scale, allowing companies to reduce costs now and continue to decrease marginal costs going forward. Companies are able to sustain a competitive advantage by investing in differentiated products and go-to-market strategies while funding the necessary IT investment from the optimization savings.

From a business perspective, successful IT optimization should position organizations to:

- Better manage cost and risk
- Support business innovation
- Comply with current regulations and best practices
- Satisfy customer expectations
- Meet service levels
- Scale more effectively
- Remain competitive.
From a technology perspective, successful IT optimization should make it easier for CIOs to:

- Anticipate and manage change
- Reduce architectural complexity
- Adopt, integrate, standardize and automate IT processes
- Expand on the value of existing investments in virtualization and server consolidation
- Increase the value of revenue-generating services.

Overall, by reducing the cost and complexity of IT service delivery, IT optimization can help organizations create a dynamic and responsive IT environment that encourages innovation.

The holistic IBM approach to IT optimization

The IBM approach to IT optimization is holistic and client centered. IBM adapts its approach to meet each organization's optimization goals, whether they are cost reduction, improved energy efficiency, enhanced response to customers, improved responsiveness to business needs or a combination of these and others. And IBM can scale as large—or as small—as needed.

IBM has built intellectual capital through hundreds of client engagements across industries over the past two decades. And it has translated this experience and accumulated capital into:

- **End-to-end solutions supported by a worldwide knowledge network and IBM technology leadership**
- **Solution templates, reference architectures and supporting business plans**
- **A pragmatic and proven approach to IT optimization that incorporates client-specific needs to help optimize benefits while reducing risks**
- **Competitive payment terms and single-contract simplicity through the IBM Global Financing division for increased flexibility in asset acquisition decisions.**
In short, IBM didn’t learn IT optimization from a book; IBM is writing the book. Its methods and delivery models were developed and proved not only in client engagements, but also through application within the company itself. Encompassing a cumulative total of 7 million square feet, 1,265 mainframes and over 200,000 midrange servers, the IBM service delivery centers are among the largest in the world. IBM tested and honed its approach to IT optimization at these centers, achieving substantial results, with 54 percent of the savings in operational labor (see figure 2).

<table>
<thead>
<tr>
<th>IBM strategic IT model</th>
<th>1997</th>
<th>Today</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIOs</td>
<td>128</td>
<td>1</td>
</tr>
<tr>
<td>Host data centers</td>
<td>166</td>
<td>7</td>
</tr>
<tr>
<td>Web hosting centers</td>
<td>30</td>
<td>5</td>
</tr>
<tr>
<td>Network</td>
<td>31</td>
<td>1</td>
</tr>
<tr>
<td>Applications</td>
<td>16,000</td>
<td>4,700</td>
</tr>
</tbody>
</table>

Tactical and operational efficiencies
- Consolidation of infrastructure
- Application consolidation/reduction
- Global resource deployment
- Enterprise end-to-end architecture optimization

Sample success metrics
- Cost and expense savings: US$6.2 billion
- Improvement in days sales outstanding: US$156 million
- Reduction in calls resulting from e-commerce: 300,000
- Reduced order to fulfillment cycle time: 6 days
- Web configurations supported: 7.4 million

Figure 2: Beginning in 1997, IBM started optimizing its own complex, far-flung environment, reaping substantial benefits in operational cost savings.
IT optimization as a source of sustainable competitive advantage.

Highlights

By establishing a clear understanding of an organization’s optimization objectives, IBM can help ensure that they are in alignment with the overall business strategy so that subsequent projects can provide real value.

Distinctive elements of the IBM approach
IBM enables organizations to implement end-to-end IT optimization solutions more quickly at reduced risk with access to:

- The most experienced people
- A proven, holistic and pragmatic process
- Marketplace-leading technology
- A unique and innovative reference architecture
- Single-source financing at competitive rates

Start by clearly defining optimization goals
A clear value of the IBM approach is the focus on broadly converting an organization’s needs and pain points into a prioritized set of projects, and then implementing these projects over time in a way that optimizes benefits while reducing risk. The first step in any IT optimization transformation must be to clearly understand the optimization objectives, in concrete and measurable terms, and ensure they are in concert with the overall business strategy, including the strategic intent for the use of IT. It’s this understanding that provides the necessary guidance to balance the four seemingly conflicting attributes of value:

- Enable new business capabilities.
- Improve internal efficiencies.
- Reduce overall IT cost.
- Promote customer satisfaction.
IT optimization as a source of sustainable competitive advantage.

IBM's approach can enable organizations to realize greater value through new business capabilities, improved efficiency, reduced costs and increased customer satisfaction.

To better define optimization in a particular environment, the IBM approach helps guide translation of the four elements of IT value into more detailed directives (see figure 3).

<table>
<thead>
<tr>
<th>Imperatives</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable new business capability</td>
<td>Create a flexible, dynamic infrastructure</td>
</tr>
<tr>
<td></td>
<td>Leverage information more effectively</td>
</tr>
<tr>
<td>Improve internal efficiencies</td>
<td>Improve infrastructure responsiveness</td>
</tr>
<tr>
<td></td>
<td>Establish global consistency of IT management</td>
</tr>
<tr>
<td>Reduce overall IT cost</td>
<td>Reduce IT cost structure</td>
</tr>
<tr>
<td></td>
<td>Improve energy efficiency</td>
</tr>
<tr>
<td>Promote customer satisfaction</td>
<td>Improve service reliability</td>
</tr>
</tbody>
</table>

Figure 3: The IBM approach to IT optimization helps organizations translate the four imperatives of IT value into a well-defined action plan.
IT optimization as a source of sustainable competitive advantage.

Page 11

Highlights

IBM helps organizations look at the key functional areas common to any IT environment to find ways to meet the optimization value imperatives that have been identified.

Broadly examine the current environment for opportunities

Once optimization value imperatives have been identified, the IBM team can help organizations examine seven areas common to any IT environment for opportunities to meet these imperatives and to determine how these areas are interrelated. In complex IT environments, it’s almost impossible to make changes in one of these areas without affecting another area:

- Business strategy
- Processes
- Organization
- Finance
- Computing and storage
- Applications and data
- Networks.

Tactical approaches to IT optimization often focus on the last three technical domains: computing and storage assets, applications and data, and networks. But in fact, the first four management domains can have an even greater impact on optimization goals. For example, a company’s business strategy may favor a decentralized approach to data centers as opposed to a highly centralized system of data centers. Figure 4 illustrates the connection between the value imperatives and the functional areas.
By using IBM’s optimization methodology to view the value imperatives and the seven areas holistically, organizations can more easily pinpoint potential optimization opportunities.

<table>
<thead>
<tr>
<th></th>
<th>Management domains</th>
<th>Technical domains</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business strategy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Processes</td>
<td>● ● ● ●</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>Organization</td>
<td>● ● ● ●</td>
<td>● ● ● ● ● ● ●</td>
</tr>
<tr>
<td>Finance</td>
<td>● ● ● ●</td>
<td>● ● ● ● ● ● ●</td>
</tr>
<tr>
<td>Computing and storage</td>
<td>● ● ● ●</td>
<td>● ● ● ● ● ● ●</td>
</tr>
<tr>
<td>Applications and data</td>
<td>● ● ● ●</td>
<td>● ● ● ● ● ● ●</td>
</tr>
<tr>
<td>Networks</td>
<td>● ● ● ●</td>
<td>● ● ● ● ● ● ●</td>
</tr>
</tbody>
</table>

- Enable new business capability
- Enable an adaptable IT infrastructure
- Maintain data more effectively
- Improve internal efficiencies
 - Optimize use of assets
 - Establish global consistency of IT management
- Reduce overall IT cost
 - Reduce total IT spending
 - Streamline technical architecture/vendors
- Promote customer satisfaction
 - Provide consistent delivery service

Figure 4: The IBM optimization methodology is holistic in nature, aligning value imperatives to all seven key areas of any IT infrastructure either as a primary or secondary focus.
IT optimization as a source of sustainable competitive advantage.

Page 13

Highlights

Organizations should look across the entire IT environment for opportunities that can help optimize networks, servers, applications, energy consumption and eventually, the data center as a whole.

The combination of the value imperatives and the domains begins to identify where optimization opportunities may exist. It’s important that IT organizations look across the entire environment. When optimization efforts are focused simply on a tactical objective, such as consolidating servers, significant opportunities are missed. While reducing servers, why not also consider ways to optimize storage, decrease labor costs and free skilled resources from repetitive administrative activities to pursue activities with higher business value? By automating process tasks and evaluating power and cooling options, an organization may well uncover opportunities for reducing networks, servers, applications, energy consumption and, ultimately, data centers.

Identify domain-specific projects

The holistic IBM approach to prioritizing IT optimization projects enables organizations to use the near-term savings—from asset consolidation, for example—to fund longer-range goals. Optimization is an ongoing process. Maintaining momentum by implementing a series of projects is key to moving toward longer-term goals.

Establish an optimization program

Each of the individual projects should be coordinated through an IT optimization program office. By establishing a program office, individual projects can be combined, synchronized and scheduled in such a way that efforts in one domain are supported, and sometimes magnified, by coordinated actions in other domains.
Case study: creating an energy-efficient and environmentally responsible data center

When it reduced energy consumption in its own data center facilities—which have more than 40,000 square feet of raised floor—Pacific Gas and Electric Company (PG&E) became a world leader in energy efficiency. Working with IBM, the utility company was able to identify an additional savings of approximately 177 kilowatts. And now PG&E is applying what it’s learned and is spearheading nearly US$1 billion in enhanced energy-efficiency programs for its customers from 2006 to 2008. This investment is projected to eliminate the need for more than 600 megawatts of new generation—or roughly the amount of electricity produced at a large power plant.

The IT optimization reference architecture: a practical, end-to-end approach

Theory is useful, but in practical terms, how do organizations get from where they are to where they need to be for sustainable IT optimization?

Because each organization has different priorities, assets and processes, IBM applies industry best practices to individual organizations’ needs using an end-to-end IT optimization reference architecture. Shown in figure 5, this architecture provides the fundamental technical levers used in any optimization program. IBM offers the optimization skill and experience to help organizations determine which levers to use, and to what degree, to provide maximum benefits at the lowest costs possible. In this way, IBM teams guide each organization in developing a personalized blueprint for sustainable IT optimization.
IT optimization as a source of sustainable competitive advantage.

Figure 5: IBM applies industry best practices to individual organizations’ needs using an end-to-end IT optimization reference architecture.
IT optimization as a source of sustainable competitive advantage.

Page 16

Highlights

Through process automation, common processes across all platforms can be standardized and repetitive tasks can be automated, allowing IT staff to focus on outcomes instead of platform management.

Infrastructure manageability services

Shown at the bottom of the reference architecture, the infrastructure manageability services layer includes the necessary computing resources, storage capacity, network, middleware and operating systems. Actions to improve overall asset utilization and availability occur at this level. For example, virtualization services can help enhance the availability of business services by reducing the need for scheduled outages. In fact, data can often be moved across platforms without disruption.

Operational management services

Moving up to the operational management services layer, organizations can begin evaluating opportunities to:

- Automatically execute IT process and operational activities
- Orchestrate how IT resources are configured and provisioned
- Optimize how IT resources are managed to achieve agreed-upon service-level objectives.

Process automation strives to improve the efficiency of IT staff by standardizing common processes across all platforms and automating repetitive tasks. Staff can focus on outcomes (services) rather than on platform management. And the manual errors that result in unscheduled outages can be eliminated. By making IT staff more efficient and effective, organizations can grow their infrastructures using the same level of support staffing.

In addition to process automation, actions at this level are aimed at consolidating workload where possible. The objective is to reduce the number of managed objects within the infrastructure, including software licenses and maintenance fees.
IT optimization as a source of sustainable competitive advantage.

Page 17

Highlights

Within the IT environment, user interfaces and tooling serve as the foundation for accessing managing and reporting capabilities, helping organizations clearly map their IT investments to business benefits.

Federated information services

The federated information services layer addresses capabilities required to track the IT service asset and configuration information that are needed to fulfill service management-related activities and support the achievement of service-level objectives. The service catalog in the IBM service management solutions layer provides a comprehensive list of the optimized IT services to be provided. And, under service delivery and support, the configuration management database contains current and accurate information about all configuration items that make up the infrastructure.

User interfaces and tooling

User interfaces and tooling provide all of the building blocks for accessing management and reporting capabilities within the IT operating environment. They represent the primary touch points for IT customers and end users to view the associated IT-related health, cost and configuration of their applications and/or business processes. They define the necessary measurement and accounting functionality to enable proper allocation of costs, which also forms the foundation for demand management efforts. These layers bring a closed loop to optimization efforts by helping to ensure that organizations can clearly tie investments in IT to business benefits.

Putting it all together

The detailed example provided in figure 6 illustrates how the IBM IT Optimization and Service Management Architecture can help organizations pull all elements together when addressing a particular IT area. In this case, the focus was on improving the application development process.
This iterative application development process involved a large number of people, assets, and handoffs among siloed teams. Many activities were manual, increasing cycle times and often resulting in errors that further slowed time to market.

Specifically, within the test phase of the process, workers had to manually locate and then procure available test assets. Then they manually provisioned all components, including servers, operating system images, storage, networks and applications. Finally they had to deprovision these assets and return all components to the original state. The iterative nature of the process compounded errors, inefficiencies and dissatisfaction. Quality assurance teams spent more than 26 percent of their time configuring machines to make them ready for testing.

Figure 6: Manually configuring the server and test framework and deploying the build is severely complicated by the number of applications, environments and servers involved.
The IBM IT Optimization and Service Management Architecture can enable organizations to address specific IT areas by combining all the appropriate elements.

IBM provides a comprehensive range of capabilities—as well as global professionals who use proven methods and models—to help companies transform their data center and IT infrastructures.

The process involved multiple types of assets, including application development software, development management software, provisioning and server management software, virtualization hardware and software, storage and storage management hardware and software, and the change and configuration management database. Therefore, optimization required an end-to-end approach combining the following capabilities:

- Automated workflow for the application development process
- Asset management (including application modules)
- Configuration
- Provisioning
- Automated capture and reproduction of test defects

Automated processes and workflow helped streamline and improve accuracy in handoffs from development to test and from test to production. Services based on best practices helped ensure acceptability testing has adequate operability testing. And, optimized hardware enabled implementation of robust provisioning and virtualization out of the box. Collectively these capabilities resulted in improved efficiency, reduced errors, higher-quality code and faster time to market. Moreover, such an end-to-end approach allowed easier and more effective migration to the production environment.

Transforming data centers and IT infrastructures
Many organizations face a tipping point from decades of building piecemeal what has become an overly complex infrastructure. Yet they obviously cannot just throw this all out and start over fresh.
In response, companies are looking to transform their data center and IT infrastructures. IBM provides an end-to-end set of capabilities, guidance and services to help clients with all aspects of their transformation objectives. Located around the world, experienced IBM professionals use time-proven methods and models, and they work with one of the most innovative reference architectures in the industry.

By taking a holistic approach to IT optimization aligned to strategic business goals, IBM can help organizations lower the amount of investment needed to keep the business running so that they can free up investment for innovation that drives further differentiation and accelerated growth.

Case study: meeting service commitments responsively, reliably and flexibly
At eBay, creating a dynamic business environment that can predict and adjust to demand quickly and seamlessly has led to the company’s enormous success. IBM technology is at the core of this environment. IBM helped eBay deploy its new business service management solution in less than six months. In fact, the company automated system-level monitoring across all its platforms in just 60 days. With the new technologies in place, eBay has realized greater efficiency in new service rollouts, accelerated development of new services and reduced application downtime caused by rollouts—without substantial staffing increases.

For more information
To learn more about how IBM can help organizations plan and implement an end-to-end optimization strategy, visit:

ibm.com/systems/optimizetime